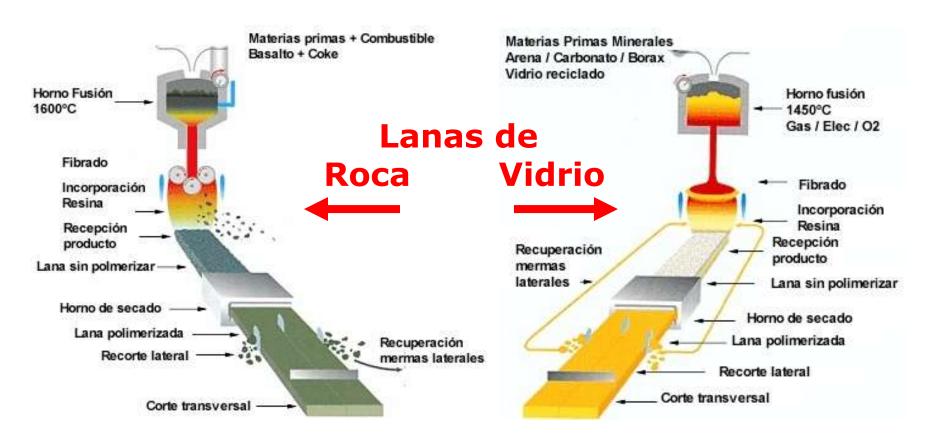


21 Novembre

La importancia del fuego en la rehabilitación energética

Mónica Herranz

AFELMA constituida por



LANAS MINERALES Procesos de fabricación

LANAS MINERALES Propiedades de las Lanas Minerales

✓ Aislamiento Térmico

Debido al aire inmóvil que retienen en su interior, dificultan el flujo de calor.

✓ Aislamiento Acústico

Debido a la elasticidad de sus fibras y su porosidad abierta, tienen una alta capacidad de absorción y amortiguación de la energía acústica.

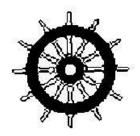
✓ Protección contra el fuego

Por su origen inorgánico, son incombustibles, capaces de mantener sus propiedades hasta altas temperaturas y NO GENERAN HUMOS NI GOTAS (son s1, d0)

REhabilita

LANAS MINERALES

Marcas de Calidad


Certificado registro de empresa emitido por AENOR con ref. ER-0043/1992;

Certificado internacional de los Sistema de Gestión de Calidad y Medio Ambiente IQNET

Certificado en Gestión Medio Ambiental, por AENOR con ref. GA-2001/0325.

Certificado productos marina emitido por Bureau Veritas

Certificado de biosolubilidad

EUCEB

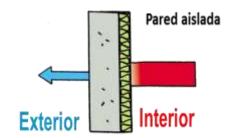
Certificado de Calidad marca N
AENOR

Certificado Acermi productos Francia

LA MALDITA **HEMEROTECA**

¿no será que tenemos un problema oculto? Y si un edificio que puede arder... ¿es sostenible?

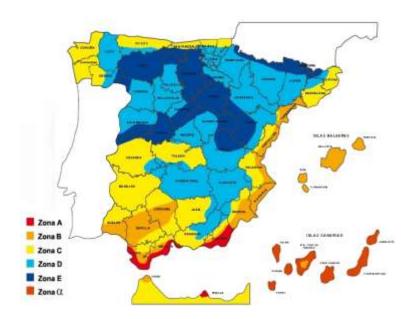
Seguridad VS Sostenibilidad


¿POR QUÉ MÁS AISLAMIENTO?

- KIOTO / PARÍS
- Menor reservas de combustibles fósiles
- Mayor coste extracción de combustibles fósiles
- Episodios de contaminación ciudadana
- Incremento del coste de la energía (>IPC)
- Energías Renovables con poco peso.
- La sociedad reclama confort y espacios más habitables (y saludables)

- Directivas europeas
- Regulación española (CTE, Certificados EE...)

¿POR QUÉ MENOS SEGURIDAD?


Más del 50% del aislamiento instalado en España es Clase E o peor

- **EPS/XPS**
- PUR/PIR (alguna excepción es C,s3,d0)

Código Técnico DB HE1 rev 2013 ... pero RSCIEI sigue sin cambios desde 2004)

- Incremento espesores > 50% en algunas zonas
- Incremento de la carga de fuego por el uso mayoritario de materiales combustibles para aislar

SIN CAMBIO EN DB-HE-SI → !!FUEGO!!

Zona climática	Cubiertas		Fachadas		Suelos	
	2006	2013	2006	2013	2006	2013
α	6	6	2	2	5	5
A	6	6	2	6	5	6
В	- 6	9				7
	7	14				
D	8	15	4	12		10
E	9	17	5	13	6	11

REhabilita

Otras temas a tener en cuenta...

CLASIFICACIÓN UNE EN 13.501.1

Materiales de construcción (excluidos suelos)

40 Posibilidades de clasificación

A1		
A2-s1, d0	A2-s1,d1	A2-s1,d2
A2-s2, d0	A2-s2,d1	A2-s2,d2
A2-s3, d0	A2-s3,d1	A2-s3,d2
B2-s1, d0	B2-s1,d1	B2-s1,d2
B2-s2, d0	B2-s2,d1	B2-s2,d2
B2-s3, d0	B2-s3,d1	B2-s3,d2
C2-s1, d0	C2-s1,d1	C2-s1,d2
C2-s2, d0	C2-s2,d1	C2-s2,d2
C2-s3, d0	C2-s3,d1	C2-s3,d2
D2-s1, d0	D2-s1,d1	D2-s1,d2
D2-s2, d0	D2-s2,d1	D2-s2,d2
D2-s3, d0	D2-s3,d1	D2-s3,d2
E	E-d2	· · · · · · · · · · · · · · · · · · ·
F		

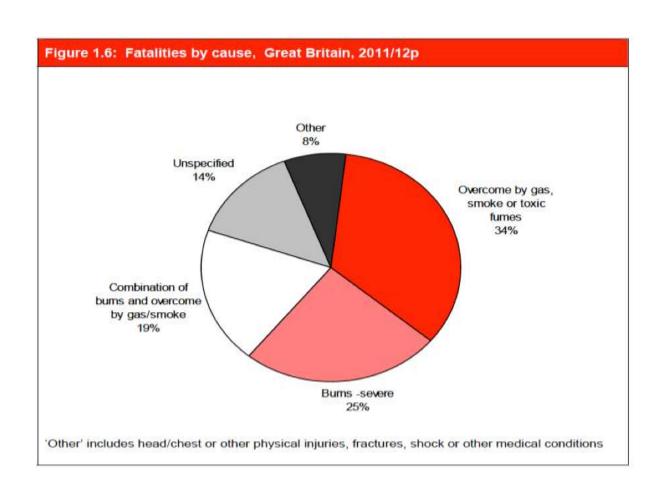
¿DÓNDE PONEMOS EL LÍMITE DE LA SEGURIDAD Y PROTECCIÓN DE PERSONAS Y BIENES?

El tiempo es clave: Los productos, el diseño y la organización deben permitir la evacuación segura y la minimización de daños

Utilizar compartimentación y productos no generadores de humos

PRECAUCIÓN CON....

- Cambios de la fase de proyecto a la de construcción... ¿el diferencial de coste es un CRITERIO ACEPTABLE de cambio de una prescripción?
- INGENIERÍA DE SEGURIDAD CONTRA INCENDIOS en la búsqueda de un COSTO "OPTIMIZADO"... ante la necesidad de aislar sólo cabe una dualidad: COMBUSTIBLE O NO COMBUSTIBLE
- El comportamiento de algunos modernos materiales de construcción, sistemas y componentes de materiales compuestos en los fuegos totalmente desarrollados no es totalmente predecible y acostumbra a representar un riesgo



EL HUMO MATA

Incendio hoy en BCN. En la zona de Mitre - Bonanova. Foto recibida personalmente de una vecina.

Por suerte, el edificio tenía un monocapa en fachada y esta no ha contribuido. Pero parece que los humos han confinado a algunos vecinos que no han podido evacuar por las escaleras.

Otro problema añadido, los bomberos no llegaban con sus medios verticales... ni podian apagar ni evacuar.

Y sin olvidar una estructura metálica expuesta durante un buen rato, más de 2h, a un fuego real.

Se queme lo que se queme, en el interior o en la fachada, muebles o aislamiento y/o revestimiento de fachada, hay personas afectadas y parece claro que los edificios en altura no están preparados para afrontar estas situaciones...

Se necesita un trato reglamentario específico para estos edificios, nuevos o a rehabilitar.

CONCLUSIONES

- Incremento de espesores necesario, puede implicar menos seguridad
- La toxicidad máximo responsable de víctimas no está regulada
- Los ensayos a pequeña escala SBI frecuentemente no reflejan la realidad a escala real → Necesidad de ensayos a gran escala
- La Rehabilitación es el gran mercado a futuro:
 - Revisión CTE-DB-HE en 2018 prevé incremento de espesores
 - Actualizar CTE-DB-SI para contrarrestar otras deficiencias constructivas
- Necesidad de stakeholders que pongan el "fuego" en la agenda política y social
- Liderazgo y "credibilidad" (imparcialidad) de las Asociaciones.

21 Novembre

MUCHAS GRACIAS

Mónica Herranz